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ABSTRACT: Virtual high-throughput screening (VHTS) and
machine learning (ML) have greatly accelerated the design of
single-site transition-metal catalysts. VHTS of catalysts, however, is
often accompanied with a high calculation failure rate and wasted
computational resources due to the difficulty of simultaneously
converging all mechanistically relevant reactive intermediates to
expected geometries and electronic states. We demonstrate a
dynamic classifier approach, i.e., a convolutional neural network
that monitors geometry optimizations on the fly, and exploit its
good performance and transferability in identifying geometry
optimization failures for catalyst design. We show that the dynamic
classifier performs well on all reactive intermediates in the
representative catalytic cycle of the radical rebound mechanism for the conversion of methane to methanol despite being trained
on only one reactive intermediate. The dynamic classifier also generalizes to chemically distinct intermediates and metal centers
absent from the training data without loss of accuracy or model confidence. We rationalize this superior model transferability as
arising from the use of electronic structure and geometric information generated on-the-fly from density functional theory
calculations and the convolutional layer in the dynamic classifier. When used in combination with uncertainty quantification, the
dynamic classifier saves more than half of the computational resources that would have been wasted on unsuccessful calculations for
all reactive intermediates being considered.

1. INTRODUCTION
Virtual high-throughput screening (VHTS)1−8 powered by
density functional theory (DFT) coupled with machine
learning (ML)9−15 has shown promise to accelerate the
discovery of materials. This acceleration is necessary because
exploring large spaces of candidate materials introduces
combinatorial challenges. Exemplary of the challenges that
arise from this combinatorial explosion is single-site inorganic
catalyst design, where metals, ligands, and substrates all must
be considered.16−18 To address this challenge, ML has been
applied to predict thermodynamic quantities to rapidly screen
this combinatorial design space in both homogeneous5,19−23

and heterogeneous catalyst24−30 design. Combined with active
learning31−33 and global optimization algorithms,34−36 catalysts
with optimal catalytic properties can be quickly identified for a
given mechanism. Because it is often difficult to experimentally
characterize all mechanistically relevant intermediates due to
their transient nature,37 computational approaches that explore
reaction mechanisms are also desired.38,39 In this case, ML
combined with automated VHTS workflows can accelerate the
exploration of potential reactive intermediates and reaction
pathways.40−46

Many promising catalysts are composed of mid-row 3d or 4d
transition metals, which give rise to favorable reactivity due to
their unpaired electrons and superior tunability in response to

changing coordination environment.47−54 However, these
exact same characteristics of transition-metal catalysts often
lead to failed geometry optimizations due to converging to
unintended geometries or unexpected electronic states.55,56

Because we require the knowledge of all relevant intermediates
to compute the full thermodynamic landscape of a catalyst or
to explore multiple possible reaction mechanisms, VHTS of
catalysts is usually accompanied by high overall failure rates
and wasted computational resources.
Recently, ML models have been developed to predict the

computational cost57,58 or suggest the most inexpensive
density functional that will be of reasonable accuracy59 for a
calculation to optimize the use of finite computational
resources. These approaches, however, do not overcome
wasted computational time due to their assumption that the
calculations will eventually succeed. On the other hand, one
can directly predict the likelihood of success for a calculation
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to avoid wasted resources. In our previous work,55 we built ML
models to directly classify outcomes (i.e., success or failure) of
transition-metal complex geometry optimizations using two-
dimensional (2D) molecular-graph-based descriptors (i.e.,
revised autocorrelations or RACs60) as inputs. While achieving
88% accuracy on the set-aside test data, the RAC-based models
failed to generalize to chemical spaces that are distinct from the
training data due to their explicit dependence on chemical
compositions as inputs.
To overcome this issue, we introduced a dynamic

classifier,55,61 which monitors a geometry optimization on
the fly and terminates a calculation if it is predicted to be
unproductive. This convolutional neural network dynamic
classifier takes step-series inputs representing the evolving
geometric and electronic structure features (e.g., energy
gradient and Mulliken bond orders) and predicts the likelihood
that an ongoing geometry optimization will complete
successfully (Figure 1). Because this model uses incremental
information gathered over the course of a DFT geometry
optimization, the dynamic classifier can generalize well across
different chemical spaces.55 This good transferability is
particularly important in catalyst design because we would
like to only train a single model that works well for all reactive
intermediates possibly involved in a reaction. A similar idea has
also been recently adopted in predicting trajectories of
molecular dynamics simulations62,63 and the dynamic control
of tokamak reactors.64,65

In this work, we exploit and demonstrate the transferability
of our dynamic classifier for catalyst design. We show that a

dynamic classifier can perform equivalently well on all reactive
intermediates in a representative reaction. Despite being
trained on only one reactive intermediate in a reaction cycle,
this dynamic classifier generalizes to unseen intermediates
within that same cycle. In addition, this dynamic classifier
makes accurate predictions on reactive intermediates with
distinct chemistry that are absent from the training data. We
further incorporate uncertainty quantification (UQ) when
using a dynamic classifier for job control, saving more than half
of the computational resources that would have been wasted
on failed calculations.

2. METHODS

2.1. DFT Geometry Optimizations. Gas-phase geometry
optimizations and single-point energy calculations were
performed using DFT with a development version of
TeraChem v1.9.66,67 The B3LYP68−70 global hybrid functional
with the empirical D3 dispersion correction71 using Becke−
Johnson damping72 was employed for all calculations. The
LACVP* composite basis set was employed throughout this
work, which consists of a LANL2DZ effective core
potential73,74 for Mn, Fe, Ru, Br, and I and the 6-31G*
basis75 for all other atoms. All singlet calculations were carried
out in a spin-restricted formalism, whereas all other spin states
were calculated with the unrestricted formalism. As motivated
by prior work,76 we simulated the metal−hydroxo intermediate
by majority-spin radical addition to the metal−oxo inter-
mediate. For other reactive intermediates (e.g., resting state
and methanol-bound intermediates), we conserved the metal−

Figure 1. (Top left) Radical rebound mechanism for direct partial oxidation of methane to methanol. The cycle proceeds clockwise from the
resting state (1) to the metal−oxo intermediate (2) formed by two-electron oxidation with N2O, followed by hydrogen atom transfer to form a
metal−hydroxo intermediate (3), and rebound to form a methanol-bound intermediate (4). (Top right) Success rate for geometry optimizations
for each intermediate (blue) and cumulative success rate when a catalyst proceeds to each intermediate after success of the previous intermediate in
the catalytic cycle (red). (Bottom) Schematic of a multitask dynamic classifier. Electronic structure and geometric features are collected from DFT
geometry optimization and used as inputs to a classifier with a convolutional layer followed by a fully connected layer. The model has multiple
outputs that predict calculation success with respect to geometry, ⟨S2⟩ deviation, and metal spin deviation.
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oxo spin state. Level shifting77 of 0.25 Ha was applied to both
majority- and minority-spin virtual orbitals to aid self-
consistent field (SCF) convergence. Geometry optimizations
were carried out with the translation rotation internal
coordinate (TRIC) optimizer78 using the L-BFGS algorithm
with default convergence thresholds of maximum energy
gradient of 4.5 × 10−4 hartree/bohr and energy difference
between steps of 10−6 hartree.
Job submission was automated by molSimplify79,80 with a 24

h wall time limit per run with up to five resubmissions.
Geometry optimizations were carried out with geometry
checks55 prior to each resubmission, and structures that failed
any check were labeled as failed calculations (Supporting
Information Table S1). Open-shell calculations were also
deemed failed calculations in the data set following established
protocols:19,55,56 (i) if the expectation value of the S2 operator
deviated from its expected value of S(S + 1) (i.e., Δ⟨S2⟩) by >1
μB

2 or (ii) the combined Mulliken spin density on the metal
and oxygen differed from the spin multiplicity (i.e., Δ metal
spin) by >1 μB (Supporting Information Table S2). A
geometry optimization is labeled as a failed calculation if any
of the three failure modes (i.e., geometry, Δ⟨S2⟩, and Δ metal
spin) presents otherwise it is labeled as successful.
2.2. Data Sets. We calculated the radical rebound

mechanism81 for methane-to-methanol conversion on mono-
nuclear Mn and Fe catalysts with realistic tetradentate
macrocycles constructed from known ligand fragments35

(Supporting Information Figure S1). For these catalysts, two
resting-state oxidation states, M(II) and M(III), in their
corresponding spin states were considered (Supporting
Information Table S3). For this catalytic cycle, we optimize
three catalytic intermediates: metal−oxo, metal−hydroxo, and
methanol-bound species. The initial geometries for metal−oxo
species were constructed using molSimplify,79 which uses
OpenBabel82,83 as a backend to interpret SMILES strings for
constructed tetradentate macrocycles. All metal−hydroxo
geometries were generated by adding an H atom to the
optimized metal−oxo structure, and all methanol-bound
intermediates were generated by adding a methyl group to
the optimized metal−hydroxo structures using a custom script
in molSimplify, as in prior work76 (Supporting Information
Figure S2). The workflow starts by optimizing the metal−oxo
geometry, and if this structure or a subsequent intermediate
fails, downstream intermediate optimizations are not attemp-
ted (Supporting Information Figure S3). We refer to this
combined data set of metal−oxo, metal−hydroxo, and
methanol-bound intermediates as the “whole cycle” (WC)
data set (Supporting Information Table S4). It is worth noting
that despite some automation packages (e.g., AARON43)
having job rescuing procedures such as constrained geometry
optimizations to fix geometry issues, more than 67% of the
failed geometry optimizations in the WC set are due to
unexpected electronic structure, and thus are unlikely to be
recovered by those rescuing procedures. In addition, the failure
mode distributions are different for metal−oxo, metal−
hydroxo, and methanol-bound intermediates, with the former
two dominated by electronic structure issues and the
methanol-bound intermediate dominated by bad geometries.
This is particularly interesting as one may initially expect the
problematic macrocycles to be filtered at the initial metal−oxo
stage in our workflow (Supporting Information Figure S3 and
Table S4).

Starting from the WC data set, we generated three data sets
inspired by common strategies and potential difficulties (i.e.,
overoxidation) in catalyst discovery: (1) the functionalized
whole cycle (FWC) data set, where tetradentate macrocycles
were functionalized with electron-withdrawing and electron-
donating groups to introduce Hammett tuning effects; (2) the
Ru−oxo species (RO) data set, where the metal (Mn or Fe) of
300 randomly sampled metal−oxo species inWC is substituted
by Ru; and (3) the carbonyl species (CS) data set, where a
carbonyl ligand replaces any converged oxo moiety in catalysts
from the WC set (Supporting Information Table S5). For the
FWC, RO, and CS data sets, we follow the same procedure for
geometry optimizations used for the WC data set. Additionally,
the metal−oxo, metal−hydroxo, and methanol-bound inter-
mediates in the FWC set were computed following the same
workflow as in WC set (Supporting Information Figures S2
and S3). Each Ru−oxo complex in RO was initialized by a
direct substitution of Mn or Fe with Ru from the initial
geometry of a metal−oxo intermediate generated with
molSimplify, with an initial RuO bond length of 1.65 Å.
Each metal−carbonyl complex in the CS set was initialized by a
direct substitution of CO in place of the oxo moiety from the
initial geometry of metal−oxo intermediate generated with
molSimplify, with an initial metal−C bond length of 2.10 Å,
C−O bond length of 1.13 Å, and metal−C−O angle of 180°.

2.3. ML Models and Representations. As in prior
work,55,84 we train convolutional neural network dynamic
classifiers using step-series electronic structure and geometric
information generated during DFT geometry optimizations to
directly predict the final classification outcomes of geometry
fitness, ⟨S2⟩, and metal spin deviation (Figure 1 and
Supporting Information Table S6 and Figure S4). The 28
electronic structure descriptors were computed from the
Mulliken charge, bond order matrix, and the energy gradient
of a complex (Supporting Information Table S6). These
properties are focused on components directly involved in the
first coordination sphere along with any long-range behavior
captured by singular value decomposition of these quantities
(Supporting Information Table S6). The 7 geometric
descriptors include the bond lengths and angular deviation
from an ideal octahedral environment as well as the distortion
of individual ligands (Supporting Information Table S1). We
trained two sets of multitask dynamic classifiers: one on all
three intermediates (i.e., metal−oxo, metal−hydroxo, and
methanol-bound) of the WC data set, and the other only on
the metal−oxo species subset of the WC data set. For all ML
models, we adopted the same sets of hyperparameters used in
our prior work55 and a random 80/20 train/test split, with 20%
of the training data (i.e., 16% overall) used as a validation set
(Supporting Information Table S7). All ML models were
trained using Keras85 with Tensorflow86 as a backend, using
the Adam optimizer with up to 2000 epochs with dropout,
batch normalization, and early stopping to avoid over-fitting.
All of the ML models and codes are available in our open-
source Python package molSimplify.79,80

3. RESULTS AND DISCUSSION
3.1. Generalizing the Dynamic Classifier across a

Catalytic Cycle. The design of selective and active C−H
activation catalysts for direct methane-to-methanol conversion
remains a grand challenge.87,88 Here, we focus on the radical
rebound mechanism on representative Mn and Fe catalysts
with macrocyclic tetradentate ligands, which have shown
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promise for exhibiting favorable thermodynamics for partial
methane oxidation.76,89,90 The whole cycle (WC) data set
consists of a number of intermediates bound to these catalysts
(Figure 1 and see Computational Details).35 Starting from a
resting state structure (1), a metal−oxo intermediate (2) is
formed via two-electron oxidation with a terminal oxidant
(here, N2O). The newly formed terminal oxo can undergo a
hydrogen atom transfer step where a hydrogen atom is
abstracted from CH4 to form a metal−hydroxo intermediate
(3). Finally, CH3· recombines with the metal−hydroxo
intermediate to form a methanol-bound intermediate (4).
Thus, properties of both the resting state (1) and each of the
three reactive intermediates (i.e., 2, 3, and 4) must be obtained
to evaluate the full thermodynamic landscape of a catalyst (see
Computational Details). We focus here on only the reactive
intermediates because we follow the convention of prior
work76 to evaluate (1) as a single-point energy (i.e., without
geometry optimization) on intermediate 2 with the oxo moiety
removed. Even if the success rate of geometry optimization is
high on each individual intermediate, the cumulative success
rate can decay rapidly because multiple intermediates are
necessary to obtain reaction energetics. For the 1653 candidate
catalysts evaluated, we observe an overall success rate of only
33% for the whole catalytic cycle although all three
intermediates have individual success rates ranging from 60
to 83% (Figure 1 and Supporting Information Table S4).
We first train our dynamic classifier as a multitask

classification model for predicting three optimization out-
comes: geometry, ⟨S2⟩ deviation, and metal spin deviation, on
all three reactive intermediates in the WC set (see Computa-
tional Details). The first property, good geometry, corresponds
to whether a structure optimizes to the intended connectivity
expected for the structure. While we have generally used this to

assess metal coordination geometries, this metric is applicable
even to closed-shell systems such as organic molecules. The
latter two properties, ⟨S2⟩ deviation and metal spin deviation,
correspond to whether the structure has a large degree of spin
contamination (i.e., ⟨S2⟩ differs from its expected value) or if
the spin does not reside on the metal. Importantly, these
properties do not always coincide: a geometry can be good
while the spin is not localized to the metal or ⟨S2⟩ deviation is
too large and vice versa. We focus on these three properties
because they are common sources of failure and/or indicate
low reliability of single-reference DFT results in VHTS.
The dynamic classifier systematically improves as the

number of optimization steps used as input increases (Figure
2 and Supporting Information Figure S5). The model, trained
on data pooled from all three intermediates, performs
comparably well on all three intermediates (Supporting
Information Figure S5). For the first few steps of the geometry
optimization, the relatively poor model accuracy (ca. 0.85) on
the geometry classification task could result in false-negative
predictions that incorrectly terminate calculations that would
have converged successfully. To overcome this challenge, we
previously introduced a classifier-specific uncertainty quantifi-
cation (UQ) metric, the latent space entropy (LSE),55 to
ensure high model confidence during prediction. LSE measures
the model classification uncertainty using the distances and
distributions of a test point relative to the training data in the
latent space (i.e., last layer of a neural network). LSE is high
and thus classification uncertainty is high when a test point lies
close to the decision boundary or/and far away from all
training data. Using the LSE as a guide, we only act on model
predictions if the LSE value is below a user-defined cutoff. We
use a cutoff of 0.3 (roughly half of its theoretical maximum,
0.69) as this value gave a balanced trade-off on making

Figure 2. Model accuracy (top) and data fraction (bottom) versus the number of geometry optimization steps for the dynamic classifier at each
Nstep (i.e., 2, 5, 10, 15, 20, 30, and 40) evaluated on the set-aside test set of the WC set. The performance of each task: geometry (left), ⟨S2⟩
deviation (middle), and metal spin deviation (right) is reported separately. We report two sets of dynamic classifiers: one that is trained on all three
intermediates in the WC set (solid circles), and the other trained only on the metal−oxo intermediate in the WC set (open circles). Model
performance is shown in the absence of model uncertainty control (green) and when we impose an LSE cutoff of 0.3 (blue). Here, accuracy is
defined as the number of correct predictions divided by the total number of data points, and data fraction is defined as the number of points with
LSE <0.3 (thus, we think we make faithful predictions) divided by the total number of data points.
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accurate and conservative classifications in our previous
work.55 Using this requirement for classification certainty, we
achieve uniformly high model accuracy (i.e., >0.95) for all
optimization step numbers and intermediates for all three tasks
at the cost of forgoing predictions for a significant fraction of
the data until we have acquired 20 steps of optimization
(Figure 2 and Supporting Information Figure S6). As the
dynamic classifier is provided more information about the
optimization (i.e., with an increasing number of steps), model
confidence grows and the data fraction that falls below the LSE
cutoff increases (Figure 2 and Supporting Information Figure
S6).55

To understand why our dynamic classifier performs
equivalently well on all three classification tasks, we visualize
the latent space of the model (i.e., the outputs of the last
hidden layer in a dynamic classifier). We find that calculations
corresponding to different failure modes cluster into regions of
the latent space (Figure 3). The failed calculations are

generally well separated from the portion of latent space
containing successful calculations. The relative orientation of
the clusters is also intuitive. There is a cluster of calculations
with both high ⟨S2⟩ deviation and metal spin deviation since
these two failure modes both stem from the unexpected
electronic structure and are often concurrent (Supporting
Information Figure S7). The boundary between calculations
with good or bad geometry is the least well defined, consistent
with this being the most challenging classification task for our
models (Figure 2).
Encouraged by the good performance of the dynamic

classifier and good transferability offered by electronic
structure inputs, we tested the dynamic classifier in a use
case representative of a regime with lower data availability.
Here, we train the dynamic classifier using the geometry
optimization results obtained only for the metal−oxo
intermediate (see Computational Details). This oxo-only
dynamic classifier performs comparably to the dynamic
classifier trained on all three intermediates of the WC set

(Figure 2 and Supporting Information Figure S8). This good
performance is observed despite the model having roughly 1/3
of the training data in the WC set and only learning from one
intermediate out of the three. Specifically, the oxo-only
dynamic classifier has accuracies within a margin of 1% for
⟨S2⟩ deviation and metal spin deviation classifications and
within 3% for the geometry classification (Figure 4). The two

sets of dynamic classifier models give nearly identical
predictions on each individual set-aside test point in the WC
set and have comparable latent space structures, which suggest
that the dynamic classifier can learn similar information from a
single intermediate in the reaction cycle (Supporting
Information Figures S9 and S10). This observation implies a
promising reduction (i.e., to 1/Nintermediate) in the number of
necessary training data points for a dynamic classifier that can
handle the multiple catalytic intermediates that must be
screened for a given reaction.

3.2. Transferability of the Dynamic Classification
Model to Out-of-Distribution Catalysts. We next tested
the transferability of the dynamic classifier to intermediates
and catalysts beyond those contained in the initial set, a
characteristic that is valuable in catalyst discovery applications.
To do so, we curated three additional data sets that are
chemically distinct from the WC set but are relevant to
screening methane-to-methanol catalysts. The first set is the
functionalized whole cycle (FWC) data set, where tetradentate
macrocycles were functionalized with electron-withdrawing
and electron-donating groups to tune catalyst energetics
(Figure 5 and Supporting Information Figure S11). In the
FWC set, we functionalize all three reactive intermediates as in
the WC set. In the Ru−oxo (RO) data set, we randomly
sampled 300 metal−oxo species (metal = Mn, Fe) from the
WC set and substituted the metal centers with Ru prior to
reoptimization (Figure 5). We use the RO set as an example of
catalyst design with isovalent metals, motivated by the fact that
Ru compounds are promising catalysts for C−H bond
activation and oxidation reactions.92,93 Finally, we introduce
the carbonyl species (CS) data set, where we replace the oxo
with a carbonyl ligand on all converged catalysts in the WC set

Figure 3. Uniform manifold approximation and projection91

(UMAP) 2D visualization of the latent space of the multitask
dynamic classifier trained on 40 steps of geometry optimization
trajectories of all three intermediates in the WC set. All data points
from the WC set are shown in gray. Geometry optimizations that are
labeled as bad are colored separately for each failure mode: red for
geometry, blue for ⟨S2⟩ deviation, and green for metal spin deviation.
Differently sized circles are used only for the visualization of
overlapping points indicating multiple failure modes for a given
calculation.

Figure 4. Difference in model accuracy (acc.) between the dynamic
classifier trained on all three intermediates and the one trained on
only the metal−oxo intermediate in the WC set with an increasing
number of optimization steps. The differences for each of the three
tasks are shown separately: blue for geometry, red for ⟨S2⟩ deviation,
and green for metal spin deviation. A dashed line is shown for no
difference.
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(Figure 5). The CS set thus contains a representative off-cycle
intermediate that could be generated in conditions of methane
overoxidation and would be likely to poison the catalyst.
Importantly, the metal-coordinating element (i.e., C) is distinct
in the CS set from the other three sets. Because the chemical
compositions of the four data sets (i.e., WC, FWC, RO, and
CS) are distinct (i.e., either due to metal or coordinating
species), we observe significantly different distributions for
both their chemical-composition-based representation (e.g.,
RACs60) and electronic-structure-based descriptors (e.g.,
Mulliken charges and bond orders, Supporting Information
Figures S12 and S13).
We find that the dynamic classifier trained only on the

metal−oxo intermediate in the WC set shows exceptional
transferability to all three out-of-distribution test sets despite
differences in chemical composition. The accuracy for the most
difficult prediction task (i.e., geometry classification) is
comparable among all four data sets (i.e., WC, FWC, RO,
and CS). Namely, we observe geometry classification accuracy
to be within 5% for all four data sets, regardless of the number
of steps used for dynamic classification (Figure 6). In addition,
the accuracy for the other two tasks, ⟨S2⟩ deviation and metal
spin deviation, is identical for the out-of-distribution FWC, RO,
and CS sets relative to the in-distribution WC set (Supporting
Information Figure S14). Here, it is worth noting that the great
transferability of our oxo-only dynamic classifier is not
achieved by simply memorizing the dominant failure modes;
the error sources are significantly different for different
intermediates in the four data sets (Supporting Information
Tables S4−S5). More interestingly, the model confidence (i.e.,
average LSE) of the dynamic classifier on the three out-of-
distribution test sets is comparable to that of the in-distribution
WC set-aside test set for all three classification tasks (Figure 6
and Supporting Information Figure S14). This observation
suggests that our oxo-only dynamic classifier has similar
confidence for making predictions on a compound that is
chemically distinct from the training data due to good
transferability across chemical compositions.

We can rationalize the transferability of our dynamic
classifier through an analysis of the inputs to the model.
These inputs are electronic structure and geometric features
generated from DFT calculations on the fly, which make them
agnostic to catalyst chemical composition. As a result, all out-
of-distribution intermediates, despite being chemically distinct
from the training complexes, reside within the 2D projected
convex hull spanned by the metal−oxo intermediate of theWC
set in the latent space of the dynamic classifier (Figure 7).
Therefore, for a new geometry optimization trajectory, the
dynamic classifier can be expected to have good training data
support even if the specific intermediate or catalyst has not
been seen by the model. This is a consequence of our use of
electronic structure and geometric features and would not have
been possible with a chemical-composition-based representa-
tion (e.g., RACs). With chemical-composition-based repre-
sentations, the out-of-distribution intermediates reside in
different regions of latent space, extending beyond the 2D
convex hull spanned by the metal−oxo intermediate of theWC
set (Supporting Information Figure S12).
Another reason for the good transferability is likely the fact

that the dynamic classifier learns from trends in how electronic
structure and geometric features evolve over the course of a
geometry optimization rather than solely from the value of
each feature at a single optimization step. This is inherent to
the dynamic classifier model architecture, which involves a
one-dimensional (1D) convolution along the dimension of the
optimization step. For example, an intermediate-spin (IS)
Mn(II)−oxo complex in the WC set and a high-spin (HS)
Mn(II)−methanol complex in the FWC set have similar trends
in the trajectories of their metal Mulliken bond valence
descriptor but distinct values of this property. However, the
dynamic classifier can correctly classify both optimization
trajectories as good with high confidence (LSE <0.1) even
though their metal bond valences lie at opposite extrema of the
distribution (Figure 8 and Supporting Information Figure
S13).

Figure 5. Schematic of out-of-distribution test data sets: The FWC set
(left) is constructed by adding functional groups (FG) on the rings
and bridges of the base macrocycles in the WC set (middle). The CS
set (top right) is constructed by changing the substrate on the metal
to carbonyl, a common product when methane is over-oxidized. The
RO set (bottom right) is constructed by substituting the metal (i.e.,
Mn or Fe) in the WC set with Ru.

Figure 6. Accuracy (top) and the average LSE (bottom) for the
geometry classification task for the set-aside test set in the WC set
(blue) and three out-of-distribution test sets (FWC in gray, RO in
green, and CS in red) with an increasing number of optimization
steps, Nstep. The dynamic classifier was trained only on the metal−oxo
intermediate in the WC set.
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For a convolutional neural network, one can visualize the
model focus, that is, the portion of input features that map
most strongly to model output, while making predictions using
gradient class activation map (GCAM).94 Here, the GCAM
focus on the two trajectories are comparable, indicating that
the dynamic classifier makes the same prediction for the same
reason (Figure 8). In contrast, an IS Fe(III)−carbonyl complex
in the CS set has distinct trends in its trajectory despite similar
values of the metal bond valence to the IS Mn(II)−methanol
complex (Figure 8). For this IS Fe(III)−carbonyl complex,
however, the distal axial ligand dissociates and produces a bad

geometry. This time, the dynamic classifier confidently (LSE
<0.1) predicts this Fe(III)−carbonyl compound to result in a
bad geometry by recognizing distinct fluctuations in properties
during geometry optimization. Interestingly, GCAM shows
that the dynamic classifier primarily focuses on the later
portion of the trajectory (i.e., step >18), which corresponds to
the second peak and decay in the metal bond valence trajectory
data. This point is approximately at the point in the
optimization where dissociation of the distal axial ligand starts
to occur.

Figure 7. UMAP 2D visualization of the latent space for different intermediates of the multitask dynamic classifier trained on 40 steps of geometry
optimization trajectories of the metal−oxo intermediate in the WC set (gray). Multiple intermediates in different data sets are shown separately:
metal−hydroxo intermediate in the WC and FWC set (blue, top left), metal−methanol intermediate in the WC and FWC set (orange, top right),
Ru−oxo intermediate in the RO set (green, bottom left), and metal−carbonyl intermediate in the CS set (red, bottom right).

Figure 8.Metal bond valence (BV, top), scaled dynamic features (middle), and GCAM focus of the geometry classification task versus the number
of steps of optimizations. The scaled dynamic features and GCAM focus are colored following the color bars (right). Properties are shown for three
example complexes: a Mn−oxo complex in the WC set with a final good geometry (left), a functionalized Mn−methanol complex in the FWC set
with a final good geometry (middle), and a Fe−carbonyl complex in the CS set with a final bad geometry (axial ligand dissociated, right). The
dynamic classifier used for GCAM analysis was trained on 40 steps of geometry optimization trajectories obtained only from the metal−oxo
intermediate in the WC set. In all three cases, the dynamic classifier makes the correct prediction with high confidence (LSE <0.1).
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After introducing an LSE cutoff of 0.3 as the UQ cutoff, we
achieve uniformly high accuracy for all prediction tasks, i.e.,
>0.90 for geometry and >0.97 for both ⟨S2⟩ and metal spin
deviation, for all four data sets at all optimization steps
(Supporting Information Figure S15). This consistent
performance is surprising because the dynamic classifier was
only trained on the metal−oxo intermediates in the WC set.
Overall, this high accuracy leads to a reduction of more than
half of the computational time that would have been wasted
due to failed calculations along with a negligible false-negative
rate (<2%) for each of the four data sets (Figure 9). Thanks to

the uniformly good performance across chemically distinct out-
of-distribution test sets especially when paired with uncertainty
quantification, the dynamic classifier can be expected to be
transferable for other mechanistic studies and catalyst screen-
ing efforts. We anticipate the dynamic classifier to be readily
transferable across catalysts with different metal, oxidation
state, spin state, and ligand environment but would expect it to
require additional training data when it is applied to catalysts
with different coordination number and geometry type. While
the electronic properties used as inputs to the model are
general and should be possible to generate with a range of
electronic structure codes, changing the basis set (e.g., to plane
waves) or DFT functional might require generation of new
training data. Explicit calculation of transition states is also
expected to be compatible with the current classifier approach
but would motivate defining additional failure modes, such as a
lack of convergence to a minimum energy pathway.

4. CONCLUSIONS
Computational catalysis requires the rapid screening of
different catalyst compositions across several intermediates.
As these screening efforts are increasingly carried out with
automated workflows, it becomes essential to anticipate and
detect when calculations fail. To address this, we built a
dynamic classifier to predict geometry optimization outcomes
on the fly for reactive intermediates. We demonstrated our
approach on the challenging reaction of direct conversion of
methane to methanol via a radical rebound mechanism. We

showed that the dynamic classifier trained on all reactive
intermediates exhibits good, balanced performance on each
intermediate. Encouraged by the model’s good transferability
across intermediates, we tested the model in a lower data
regime where only the metal−oxo intermediate was included in
the training data. This oxo-only dynamic classifier performed
similarly well compared to the original model. This observation
is general, suggesting the promise of reducing the required
training data to 1/Nintermediate in practical applications for
complex reaction networks. A proposed workflow motivated by
this observation is to train the dynamic classifier only on the
first reactive intermediate of a reaction cycle and then apply
that model for all additional reactive intermediates to
accelerate screening of the full catalytic cycle.
In addition to expected catalytic intermediates, a true test of

transferability for computational catalysis is that the model
generalizes to reactive intermediates with distinct chemistry.
We evaluated model performance on catalysts that were
functionalized with small functional groups frequently
employed in Hammett tuning, those with substituted transition
metals (i.e., Ru instead of Fe), and off-cycle intermediates with
distinct metal-coordinating atoms (here, metal−carbonyl). For
all three sets, we found that the oxo-only dynamic classifier
generalized well to these out-of-distribution intermediates. We
rationalized the transferability of the dynamic classifier in two
ways. First, the dynamic classifier only uses electronic structure
and geometric features generated during DFT geometry
optimizations. Thus, the model can be expected to be
transferable because DFT-based descriptors are likely to be
more comparable than chemical-composition-based ones.
Second, the dynamic classifier utilizes a convolution layer for
step-series features generated during an optimization, making it
focus on the trends of a trajectory rather than the value of each
feature that differs more significantly between catalysts.
We incorporated an uncertainty quantification metric in the

form of the latent space entropy to ensure that the oxo-only
dynamic classifier made predictions only where it was most
confident. Using this approach, we demonstrated a greater
than 50% reduction in computational time to carry out catalyst
screening by avoiding unsuccessful calculations along with
negligible false-negative predictions (<2%) for all intermediates
considered in this work. The uniformly large reduction and low
false-negative rate highlight how this dynamic classifier model
is ready for use to improve the robustness of automated
workflows, perhaps even beyond that which can normally be
achieved via manual intervention. We note that a similar
approach can also be generalized to transition state searches,
which are generally more prone to calculation failures such as
convergence issues, and we are actively working in this
direction. This uncertainty-aware dynamic classifier represents
a promising approach to both accelerate VHTS and improve
its fidelity, and we expect our approach to be general to a wide
range of materials and catalyst screening studies.
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to make model predictions.
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